Schödel et al. (2007)
The S-stars cluster
Tidal disruption
Extreme mass ratio inspiral
Steve Drasco & Curt Cutler
\(N\)-body simulation (\(N=10^4\, t = 10^5 \mathrm{yr}\))
Bar-Or et al. (2013)
Commonly used Approximations:
Description by a Fokker-Planck (diffusion) equation:
\(2\)-body encounter
\[\frac{\partial}{\partial t}f\left(E,t\right)=\frac{1}{2}\frac{\partial^{2}}{\partial E^{2}}\left[D_{2}\left(E\right)f\left(E,t\right)\right]-\frac{\partial}{\partial x}\left[D_{1}\left(E\right)f\left(E,t\right)\right] \]
Resonant Relaxation (Rauch & Tremaine 1996):
\(N\)-body simulation (\(N=10^4\, t = 10^5 \mathrm{yr}\))
Bar-Or et al. (2013)
\(N\)-body simulation (\(N=10^4\, t = 10^5 \mathrm{yr}\))
Bar-Or et al. (2013)
Challenges:
Description by a diffusion equation?
\(N\)-ring simulation
Monte Carlo simulations: \(2\)-body only
Bar-Or and Alexander (2015)
Monte Carlo simulations: with resonant relaxation
Bar-Or and Alexander (2015)
S2
Ghez et al. (2008), Gillessen et al. (2009)
\[T_{GR}\approx2\times10^{3}P\]
Post-Newtonian \(N\)-body simulation (\(N=50\))
Kupi and Alexander (2012)
Challenges:
Description by a diffusion equation?
Noise models
Power spectrum
Bar-Or and Alexander (2014)
Power spectrum
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Bar-Or and Alexander (2014)
Analytic model
Bar-Or and Alexander (2015)
Monte-Carlo simulation
Bar-Or and Alexander (2015)